Generalized Moonshine Ii: Borcherds Products

نویسنده

  • SCOTT CARNAHAN
چکیده

The goal of this paper is to construct infinite dimensional Lie algebras using infinite product identities, and to use these Lie algebras to reduce the generalized moonshine conjecture to a pair of hypotheses about group actions on vertex algebras and Lie algebras. The Lie algebras that we construct conjecturally appear in an orbifold conformal field theory with symmetries given by the monster simple group. We introduce vector-valued modular functions attached to families of modular functions of different levels, and we prove infinite product identities for a distinguished class of automorphic functions on a product of two half-planes. We recast this result using the Borcherds-Harvey-Moore singular theta lift, and show that the vector-valued functions attached to completely replicable modular functions with integer coefficients lift to automorphic functions with infinite product expansions at all cusps. For each element of the monster simple group, we construct an infinite dimensional Lie algebra, such that its denominator formula is an infinite product expansion of the automorphic function arising from that element’s McKay-Thompson series. These Lie algebras have the unusual property that their simple roots and all root multiplicities are known. We show that under certain hypotheses, characters of groups acting on these Lie algebras form functions on the upper half plane that are either constant or invariant under a genus zero congruence group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monstrous Moonshine and Monstrous Lie Superalgebras

Invent. Math. 109, 405-444 (1992). Richard E. Borcherds, Department of pure mathematics and mathematical statistics, 16 Mill Lane, Cambridge CB2 1SB, England. We prove Conway and Norton’s moonshine conjectures for the infinite dimensional representation of the monster simple group constructed by Frenkel, Lepowsky and Meurman. To do this we use the no-ghost theorem from string theory to construc...

متن کامل

The algebraic meaning of genus-zero1

The Conway–Norton conjectures unexpectedly related the Monster with certain special modular functions (Hauptmoduls). Their proof by Borcherds et al was remarkable for demonstrating the rich mathematics implicit there. Unfortunately Moonshine remained almost as mysterious after the proof as before. In particular, a computer check — as opposed to a general conceptual argument — was used to verify...

متن کامل

Abstract Crystals for Quantum Generalized Kac-moody Algebras

In this paper, we introduce the notion of abstract crystals for quantum generalized Kac-Moody algebras and study their fundamental properties. We then prove the crystal embedding theorem and give a characterization of the crystals B(∞) and B(λ). Introduction The purpose of this paper is to develop the theory of abstract crystals for quantum generalized Kac-Moody algebras. In [6], the third auth...

متن کامل

Modular data: the algebraic combinatorics of conformal field theory

This paper is primarily intended as an introduction for mathematicians to some of the rich algebraic combinatorics arising in for instance conformal field theory (CFT). It is essentially self-contained, apart from some of the background motivation (Section I) and examples (Section III) which are included to give the reader a sense of the context. Detailed proofs will appear elsewhere. The theor...

متن کامل

Polyhedral Realization of Crystal Bases for Generalized Kac-moody Algebras

In this paper, we give polyhedral realization of the crystal B(∞) of U− q (g) for the generalized Kac-Moody algebras. As applications, we give explicit descriptions of crystals for the generalized Kac-Moody algebras of rank 2, 3 and Monster Lie algebras. Introduction In his study of Conway and Norton’s Moonshine Conjecture [3] for the infinite dimensional Z-graded representation V ♮ of the Mons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009